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Abstract

The Riemann hypothesis on nontrivial zeros of the Riemann zeta function is proved. If a

complex number s0 = σ0+ it0 is a nontrivial zero, thеn (σ0, t0) is a solution to a system of two

equations of two real variables σ and t. Considering one of that two equations one can found

that one side of it increases and the other decreases as a function of σ ∈ (0; 1) on the set of so

called critical values of σ at the "height" t = t0, so (σ0, t0) is the unique solution at t = t0. As

nontrivial zeros are symmetric about the line Re s = 1/2 it follows that σ0 = 1/2.

Introduction and statement of the problem

Let s = σ + it be a complex variable, where σ = Re s, t = Im s, and

x ∈ R be a real variable.

It is known [1] that for Re s > 0, s ̸= 1 the Riemann zeta function ζ(s) has the representa-

tion:

ζ(s) = 1 +
1

s− 1
− s

∞∫
1

{x}
xs+1

dx (1)

Here {x} denotes the fractional part of a number x.

Let us rewrite equality 1 as

ζ(s) = s

 1

s− 1
−

∞∫
1

{x}
xs+1

dx


Thus, to obtain nontrivial zeros of the function ζ(s) we must solve the following equation:

∞∫
1

{x}
xs+1

=
1

s− 1
(2)
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We get two equations:

1

xs+1
=

1

xσ+1
(cos(t lnx)− isin(t lnx)) ,

1

s− 1
=

σ − 1

(σ − 1)2 + t2
− i

t

(σ − 1)2 + t2
.

Therefore, equation 2 is equivalent to the following system:



∞∫
1

{x}
xσ+1

cos(t lnx)dx =
σ − 1

(σ − 1)2 + t2
,

∞∫
1

{x}
xσ+1

sin(t lnx)dx =
t

(σ − 1)2 + t2
.

(3)

It is known that nontrivial zeros are symmetric about the real axis, therefore it suffices to

consider the case t > 0.

In the sequel, we always assume that 0 < σ < 1, t > 0.

Definition 1. The half-trip 0 < σ < 1, t > 0 is called critical.

In the sequel, an arbitrary nontrivial zero s0 = σ0 + it0 is considered to be fixed.

The Riemann hypothesis states that σ0 = 1/2.

Left and right sides of the equations of system 3

Let us introduce four useful functions as follows:

u1(σ, t) =

∞∫
1

{x}
xσ+1

cos(t lnx)dx,

v1(σ, t) =

∞∫
1

{x}
xσ+1

sin(t lnx)dx,

u2(σ, t) =
σ − 1

(σ − 1)2 + t2
,

v2(σ, t) =
t

(σ − 1)2 + t2
.

Equality 2 can be represented as follows

u1(σ, t)− iv1(σ, t) = u2(σ, t)− iv2(σ, t).

Thus one can represent system 3 in the following way:
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
u1(σ, t) = u2(σ, t),

v1(σ, t) = v2(σ, t).
(4)

If s0 = σ0 + it0 is a nontrivial zero, then (σ0, t0) is a solution to system 4, therefore it is

a solution to the second equation v1(σ, t) = v2(σ, t) of the system. Further on, we study the

behavior of both sides of this equation.

Lemma 1. By holding t0 > 0 constant, the function w = v2(σ, t0) increases as a function of

one variable σ.

Proof. It follows from the inequality

∂v2
∂σ

= − 2(σ − 1)t

(t2 + (σ − 1)2)2
> 0

Lemma 2. Let v1(σ, t0) > 0 and v1(σ
′, t0) > 0 for σ, σ′ such that 0 < σ < σ′ < 1. This yields

the inequality v1(σ, t0) > v1(σ
′, t0).

Proof. The function sin(t0 lnx) has zeros (its x-intercepts) xk = eπk/t0 , where k ∈ Z. Moreover,

as x ≥ 1, t0 lnx ≥ 0 and t0 lnx = πk we get k ∈ N ∪ {0}. As the function ex is monotone

increasing and tending to infinity, for each n = 1, 2, . . . the interval (n, n + 1) of the x-axis

contains finite set of zeros.1. Between any two consecutive zeros, the function will be either

positive or negative. Therefore these zeros divide each interval into a finite set of sub-intervals

where the function sin(t0 lnx) is positive or negative.

Denote U+
n the union of sub-intervals where the function is positive, and U−

n - the union of

sub-intervals where the function is negative in the interval (n, n+ 1), n = 1, 2, . . . .

Denote Ψ+(σ, x) the function that coincides with the function {x} sin(t0 lnx)/xσ+1 on the

set
∪∞

n=1 U
+
n and is equal to 0 on the set

∪∞
n=1 U

−
n .

The function Ψ−(σ, x) is to be constructed in the same way.

The series that generates the function v1(σ, t0) converges absolutely, therefore we get

v1(σ, t0) =

∞∑
n=1

n+1∫
n

Ψ+(σ, x)dx+

∞∑
n=1

n+1∫
n

Ψ−(σ, x)dx (5)

1For example, computer calculation showed that for t0 = 100 the interval (1; 2) contains 22 zeros.
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Rewrite equation 5 as following

v1(σ, t0) =

∞∫
1

Ψ+(σ, x)dx+

∞∫
1

Ψ−(σ, x)dx. (6)

By assumption v1(σ, t0) > 0, thus from equation 6 we get

0 <

∞∫
1

(−Ψ−)(σ, x)dx <

∞∫
1

Ψ+(σ, x)dx (7)

Denote α = σ′ − σ. Reasoning the same way that led to equation 5, we get

v1(σ
′, t0) =

∞∑
n=1

n+1∫
n

1

xα
Ψ+(σ, x)dx+

∞∑
n=1

n+1∫
n

1

xα
Ψ−(σ, x)dx

Rewrite this equation as following

v1(σ
′, t0) =

∞∫
1

1

xα
Ψ+(σ, x)dx+

∞∫
1

1

xα
Ψ−(σ, x)dx.

Consider the difference v1(σ, t0)− v1(σ
′, t0). Let us determine its sign.

v1(σ, t0)− v1(σ
′, t0) =

=
∞∑
n=1

n+1∫
n

Ψ+(σ, x)dx+
∞∑
n=1

n+1∫
n

Ψ−(σ, x)dx−

−
∞∑
n=1

n+1∫
n

1

xα
Ψ+(σ, x)dx−

∞∑
n=1

n+1∫
n

1

xα
Ψ−(σ, x)dx =

=

 ∞∑
n=1

n+1∫
n

Ψ+(σ, x)dx−
∞∑
n=1

n+1∫
n

1

xα
Ψ+(σ, x)dx

+

+

 ∞∑
n=1

n+1∫
n

Ψ−(σ, x)dx−
∞∑
n=1

n+1∫
n

1

xα
Ψ−(σ, x)dx

 =

=

∞∑
n=1

n+1∫
n

(
1− 1

xα

)
Ψ+(σ, x)dx+

∞∑
n=1

n+1∫
n

(
1− 1

xα

)
Ψ−(σ, x)dx =

=

∞∫
1

(
1− 1

xα

)
Ψ+(σ, x)dx+

∞∫
1

(
1− 1

xα

)
Ψ−(σ, x)dx.

As 1− 1/xα > 0 so it follows from inequality 7 that

∞∫
1

(
1− 1

xα

)
(−Ψ−)(σ, x)dx <

∞∫
1

(
1− 1

xα

)
Ψ+(σ, x)dx
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Therefore
∞∫
1

(
1− 1

xα

)
Ψ+(σ, x)dx+

∞∫
1

(
1− 1

xα

)
Ψ−(σ, x)dx > 0

This means that v1(σ, t0)− v1(σ
′, t0) > 0, hence v1(σ, t0) > v1(σ

′, t0), Q.E.D.

It follows from Lemma 1 that all values of the function w = v2(σ, t0), where σ ∈ (0; 1),

belong to the interval (t0/(1 + t20), 1/t0) .

In other words, the graph of the function w = v2(σ, t0) lies entirely in the rectangle

0 < σ < 1, t0/(1 + t20) < w < 1/t0.

Further interest is only the part of the graph of the function w = v1(σ, t0) that is contained

in this rectangle.

Definition 2. The rectangle 0 < σ < 1, t0/(1 + t20) < w < 1/t0 is called critical.

Definition 3. A value of σ is called critical if the point (σ, v1(σ, t0)) belongs to the critical

rectangle.

Thus the value σ0 is critical.

The graphs of w = v1(σ, t0) and w = v2(σ, t0) intersect at the point (σ0, v2(σ0, t0)).

Lemma 3. Holding the value t0 > 0 constant, we get the function v1(σ, t0) decreasing on the

set of critical values of the variable σ.

Proof. Let σ1 and σ2 be arbitrary critical values such that σ1 < σ2. The function v1(σ, t0) is

positive at this values, hence it follows from Lemma 2 that v1(σ1, t0) > v1(σ2, t0). The lemma

is proved.

The proof of the Riemann hypothesis

Theorem. Let s0 = σ0+ it0 be a nontrivial zero of the Riemann zeta function; then σ0 = 1/2.

Proof. A nontrivial zero of the zeta function is a solution to equation 2, hence the pair (σ0, t0)

satisfies system 4, and, in particular, its second equality.

From Lemmas 2 and 3 it follows that this pair is unique. Suppose σ0 ̸= 1/2. It is known

that nontrivial zeros are symmetric about the line Re s = 1/2, hence there exists another zero

1 − σ0 + it0 at the same "height" t = t0, therefore the pair (1 − σ0, t0) satisfies the second

equality as well.

This contradiction proves the theorem.
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