On nontrivial zeros of the Riemann zeta function

(C) Nail Musin

April 18, 2017

Abstract

The Riemann hypothesis on nontrivial zeros of the Riemann zeta function is proved. If a complex number $s_{0}=\sigma_{0}+i t_{0}$ is a nontrivial zero, then $\left(\sigma_{0}, t_{0}\right)$ is a solution to a system of two equations of two real variables σ and t. Considering one of that two equations one can found that one side of it increases and the other decreases as a function of $\sigma \in(0 ; 1)$ on the set of so called critical values of σ at the "height" $t=t_{0}$, so $\left(\sigma_{0}, t_{0}\right)$ is the unique solution at $t=t_{0}$. As nontrivial zeros are symmetric about the line $\operatorname{Re} s=1 / 2$ it follows that $\sigma_{0}=1 / 2$.

Introduction and statement of the problem

Let $s=\sigma+i t$ be a complex variable, where $\sigma=\operatorname{Re} s, t=\operatorname{Im} s$, and $x \in \mathbb{R}$ be a real variable.

It is known [1] that for $\operatorname{Re} s>0, s \neq 1$ the Riemann zeta function $\zeta(s)$ has the representation:

$$
\begin{equation*}
\zeta(s)=1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x \tag{1}
\end{equation*}
$$

Here $\{x\}$ denotes the fractional part of a number x.
Let us rewrite equality 1 as

$$
\zeta(s)=s\left(\frac{1}{s-1}-\int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} d x\right)
$$

Thus, to obtain nontrivial zeros of the function $\zeta(s)$ we must solve the following equation:

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\{x\}}{x^{s+1}}=\frac{1}{s-1} \tag{2}
\end{equation*}
$$

We get two equations:

$$
\begin{aligned}
& \frac{1}{x^{s+1}}=\frac{1}{x^{\sigma+1}}(\cos (t \ln x)-i \sin (t \ln x)), \\
& \frac{1}{s-1}=\frac{\sigma-1}{(\sigma-1)^{2}+t^{2}}-i \frac{t}{(\sigma-1)^{2}+t^{2}} .
\end{aligned}
$$

Therefore, equation 2 is equivalent to the following system:

$$
\left\{\begin{array}{l}
\int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \cos (t \ln x) d x=\frac{\sigma-1}{(\sigma-1)^{2}+t^{2}}, \tag{3}\\
\int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \sin (t \ln x) d x=\frac{t}{(\sigma-1)^{2}+t^{2}}
\end{array}\right.
$$

It is known that nontrivial zeros are symmetric about the real axis, therefore it suffices to consider the case $t>0$.

In the sequel, we always assume that $0<\sigma<1, t>0$.
Definition 1. The half-trip $0<\sigma<1, t>0$ is called critical.

In the sequel, an arbitrary nontrivial zero $s_{0}=\sigma_{0}+i t_{0}$ is considered to be fixed.
The Riemann hypothesis states that $\sigma_{0}=1 / 2$.

Left and right sides of the equations of system 3

Let us introduce four useful functions as follows:

$$
\begin{aligned}
& u_{1}(\sigma, t)=\int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \cos (t \ln x) d x, \\
& v_{1}(\sigma, t)=\int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \sin (t \ln x) d x, \\
& u_{2}(\sigma, t)=\frac{\sigma-1}{(\sigma-1)^{2}+t^{2}}, \\
& v_{2}(\sigma, t)=\frac{t}{(\sigma-1)^{2}+t^{2}} .
\end{aligned}
$$

Equality 2 can be represented as follows

$$
u_{1}(\sigma, t)-i v_{1}(\sigma, t)=u_{2}(\sigma, t)-i v_{2}(\sigma, t) .
$$

Thus one can represent system 3 in the following way:

$$
\left\{\begin{array}{l}
u_{1}(\sigma, t)=u_{2}(\sigma, t) \tag{4}\\
v_{1}(\sigma, t)=v_{2}(\sigma, t)
\end{array}\right.
$$

If $s_{0}=\sigma_{0}+i t_{0}$ is a nontrivial zero, then $\left(\sigma_{0}, t_{0}\right)$ is a solution to system 4 , therefore it is a solution to the second equation $v_{1}(\sigma, t)=v_{2}(\sigma, t)$ of the system. Further on, we study the behavior of both sides of this equation.

Lemma 1. By holding $t_{0}>0$ constant, the function $w=v_{2}\left(\sigma, t_{0}\right)$ increases as a function of one variable σ.

Proof. It follows from the inequality

$$
\frac{\partial v_{2}}{\partial \sigma}=-\frac{2(\sigma-1) t}{\left(t^{2}+(\sigma-1)^{2}\right)^{2}}>0
$$

Lemma 2. Let $v_{1}\left(\sigma, t_{0}\right)>0$ and $v_{1}\left(\sigma^{\prime}, t_{0}\right)>0$ for σ, σ^{\prime} such that $0<\sigma<\sigma^{\prime}<1$. This yields the inequality $v_{1}\left(\sigma, t_{0}\right)>v_{1}\left(\sigma^{\prime}, t_{0}\right)$.

Proof. The function $\sin \left(t_{0} \ln x\right)$ has zeros (its x-intercepts) $x_{k}=e^{\pi k / t_{0}}$, where $k \in \mathbb{Z}$. Moreover, as $x \geq 1, t_{0} \ln x \geq 0$ and $t_{0} \ln x=\pi k$ we get $k \in \mathbb{N} \cup\{0\}$. As the function e^{x} is monotone increasing and tending to infinity, for each $n=1,2, \ldots$ the interval $(n, n+1)$ of the x-axis contains finite set of zeros. ${ }^{1}$. Between any two consecutive zeros, the function will be either positive or negative. Therefore these zeros divide each interval into a finite set of sub-intervals where the function $\sin \left(t_{0} \ln x\right)$ is positive or negative.

Denote U_{n}^{+}the union of sub-intervals where the function is positive, and U_{n}^{-}- the union of sub-intervals where the function is negative in the interval $(n, n+1), n=1,2, \ldots$

Denote $\Psi^{+}(\sigma, x)$ the function that coincides with the function $\{x\} \sin \left(t_{0} \ln x\right) / x^{\sigma+1}$ on the set $\bigcup_{n=1}^{\infty} U_{n}^{+}$and is equal to 0 on the set $\bigcup_{n=1}^{\infty} U_{n}^{-}$.

The function $\Psi^{-}(\sigma, x)$ is to be constructed in the same way.
The series that generates the function $v_{1}\left(\sigma, t_{0}\right)$ converges absolutely, therefore we get

$$
\begin{equation*}
v_{1}\left(\sigma, t_{0}\right)=\sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{+}(\sigma, x) d x+\sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{-}(\sigma, x) d x \tag{5}
\end{equation*}
$$

[^0]Rewrite equation 5 as following

$$
\begin{equation*}
v_{1}\left(\sigma, t_{0}\right)=\int_{1}^{\infty} \Psi^{+}(\sigma, x) d x+\int_{1}^{\infty} \Psi^{-}(\sigma, x) d x \tag{6}
\end{equation*}
$$

By assumption $v_{1}\left(\sigma, t_{0}\right)>0$, thus from equation 6 we get

$$
\begin{equation*}
0<\int_{1}^{\infty}\left(-\Psi^{-}\right)(\sigma, x) d x<\int_{1}^{\infty} \Psi^{+}(\sigma, x) d x \tag{7}
\end{equation*}
$$

Denote $\alpha=\sigma^{\prime}-\sigma$. Reasoning the same way that led to equation 5 , we get

$$
v_{1}\left(\sigma^{\prime}, t_{0}\right)=\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{+}(\sigma, x) d x+\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{-}(\sigma, x) d x
$$

Rewrite this equation as following

$$
v_{1}\left(\sigma^{\prime}, t_{0}\right)=\int_{1}^{\infty} \frac{1}{x^{\alpha}} \Psi^{+}(\sigma, x) d x+\int_{1}^{\infty} \frac{1}{x^{\alpha}} \Psi^{-}(\sigma, x) d x
$$

Consider the difference $v_{1}\left(\sigma, t_{0}\right)-v_{1}\left(\sigma^{\prime}, t_{0}\right)$. Let us determine its sign.

$$
\begin{aligned}
v_{1}\left(\sigma, t_{0}\right)-v_{1}\left(\sigma^{\prime}, t_{0}\right)= & \\
& =\sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{+}(\sigma, x) d x+\sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{-}(\sigma, x) d x- \\
& -\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{+}(\sigma, x) d x-\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{-}(\sigma, x) d x= \\
= & \left(\sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{+}(\sigma, x) d x-\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{+}(\sigma, x) d x\right)+ \\
& +\left(\sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{-}(\sigma, x) d x-\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{-}(\sigma, x) d x\right)= \\
= & \sum_{n=1}^{\infty} \int_{n}^{n+1}\left(1-\frac{1}{x^{\alpha}}\right) \Psi^{+}(\sigma, x) d x+\sum_{n=1}^{\infty} \int_{n}^{n+1}\left(1-\frac{1}{x^{\alpha}}\right) \Psi^{-}(\sigma, x) d x= \\
& =\int_{1}^{\infty}\left(1-\frac{1}{x^{\alpha}}\right) \Psi^{+}(\sigma, x) d x+\int_{1}^{\infty}\left(1-\frac{1}{x^{\alpha}}\right) \Psi^{-}(\sigma, x) d x .
\end{aligned}
$$

As $1-1 / x^{\alpha}>0$ so it follows from inequality 7 that

$$
\int_{1}^{\infty}\left(1-\frac{1}{x^{\alpha}}\right)\left(-\Psi^{-}\right)(\sigma, x) d x<\int_{1}^{\infty}\left(1-\frac{1}{x^{\alpha}}\right) \Psi^{+}(\sigma, x) d x
$$

Therefore

$$
\int_{1}^{\infty}\left(1-\frac{1}{x^{\alpha}}\right) \Psi^{+}(\sigma, x) d x+\int_{1}^{\infty}\left(1-\frac{1}{x^{\alpha}}\right) \Psi^{-}(\sigma, x) d x>0
$$

This means that $v_{1}\left(\sigma, t_{0}\right)-v_{1}\left(\sigma^{\prime}, t_{0}\right)>0$, hence $v_{1}\left(\sigma, t_{0}\right)>v_{1}\left(\sigma^{\prime}, t_{0}\right)$, Q.E.D.
It follows from Lemma 1 that all values of the function $w=v_{2}\left(\sigma, t_{0}\right)$, where $\sigma \in(0 ; 1)$, belong to the interval $\left(t_{0} /\left(1+t_{0}^{2}\right), 1 / t_{0}\right)$.

In other words, the graph of the function $w=v_{2}\left(\sigma, t_{0}\right)$ lies entirely in the rectangle $0<\sigma<1, t_{0} /\left(1+t_{0}^{2}\right)<w<1 / t_{0}$.

Further interest is only the part of the graph of the function $w=v_{1}\left(\sigma, t_{0}\right)$ that is contained in this rectangle.

Definition 2. The rectangle $0<\sigma<1, t_{0} /\left(1+t_{0}^{2}\right)<w<1 / t_{0}$ is called critical.
Definition 3. A value of σ is called critical if the point $\left(\sigma, v_{1}\left(\sigma, t_{0}\right)\right)$ belongs to the critical rectangle.

Thus the value σ_{0} is critical.
The graphs of $w=v_{1}\left(\sigma, t_{0}\right)$ and $w=v_{2}\left(\sigma, t_{0}\right)$ intersect at the point $\left(\sigma_{0}, v_{2}\left(\sigma_{0}, t_{0}\right)\right)$.
Lemma 3. Holding the value $t_{0}>0$ constant, we get the function $v_{1}\left(\sigma, t_{0}\right)$ decreasing on the set of critical values of the variable σ.

Proof. Let σ_{1} and σ_{2} be arbitrary critical values such that $\sigma_{1}<\sigma_{2}$. The function $v_{1}\left(\sigma, t_{0}\right)$ is positive at this values, hence it follows from Lemma 2 that $v_{1}\left(\sigma_{1}, t_{0}\right)>v_{1}\left(\sigma_{2}, t_{0}\right)$. The lemma is proved.

The proof of the Riemann hypothesis

Theorem. Let $s_{0}=\sigma_{0}+i t_{0}$ be a nontrivial zero of the Riemann zeta function; then $\sigma_{0}=1 / 2$.
Proof. A nontrivial zero of the zeta function is a solution to equation 2 , hence the pair (σ_{0}, t_{0}) satisfies system 4, and, in particular, its second equality.

From Lemmas 2 and 3 it follows that this pair is unique. Suppose $\sigma_{0} \neq 1 / 2$. It is known that nontrivial zeros are symmetric about the line $\operatorname{Re} s=1 / 2$, hence there exists another zero $1-\sigma_{0}+i t_{0}$ at the same "height" $t=t_{0}$, therefore the pair $\left(1-\sigma_{0}, t_{0}\right)$ satisfies the second equality as well.

This contradiction proves the theorem.

References

[1] Галочкин А.И.,Нестеренко Ю.В., Шидловский А.Б. Введение в теорию чисел, Изд-во Московского университета,1984

[^0]: ${ }^{1}$ For example, computer calculation showed that for $t_{0}=100$ the interval (1;2) contains 22 zeros.

