On nontrivial zeros of the Riemann zeta function

© Nail Musin

April 18, 2017

Abstract

The Riemann hypothesis on nontrivial zeros of the Riemann zeta function is proved. If a complex number $s_0 = \sigma_0 + it_0$ is a nontrivial zero, then (σ_0, t_0) is a solution to a system of two equations of two real variables σ and t. Considering one of that two equations one can found that one side of it increases and the other decreases as a function of $\sigma \in (0; 1)$ on the set of so called critical values of σ at the "height" $t = t_0$, so (σ_0, t_0) is the unique solution at $t = t_0$. As nontrivial zeros are symmetric about the line Re s = 1/2 it follows that $\sigma_0 = 1/2$.

Introduction and statement of the problem

Let $s = \sigma + it$ be a complex variable, where $\sigma = \text{Re } s, t = \text{Im } s$, and $x \in \mathbb{R}$ be a real variable.

It is known [1] that for Re $s > 0, s \neq 1$ the Riemann zeta function $\zeta(s)$ has the representation:

$$\zeta(s) = 1 + \frac{1}{s-1} - s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} dx \tag{1}$$

Here $\{x\}$ denotes the fractional part of a number x.

Let us rewrite equality 1 as

$$\zeta(s) = s \left(\frac{1}{s-1} - \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} dx \right)$$

Thus, to obtain nontrivial zeros of the function $\zeta(s)$ we must solve the following equation:

$$\int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} = \frac{1}{s-1} \tag{2}$$

We get two equations:

$$\frac{1}{x^{s+1}} = \frac{1}{x^{\sigma+1}} \left(\cos(t \ln x) - i \sin(t \ln x) \right),$$

$$\frac{1}{s-1} = \frac{\sigma - 1}{(\sigma - 1)^2 + t^2} - i \frac{t}{(\sigma - 1)^2 + t^2}.$$

Therefore, equation 2 is equivalent to the following system:

$$\begin{cases} \int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \cos(t \ln x) dx = \frac{\sigma - 1}{(\sigma - 1)^2 + t^2}, \\ \int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \sin(t \ln x) dx = \frac{t}{(\sigma - 1)^2 + t^2}. \end{cases}$$
(3)

It is known that nontrivial zeros are symmetric about the real axis, therefore it suffices to consider the case t > 0.

In the sequel, we always assume that $0 < \sigma < 1, t > 0$.

Definition 1. The half-trip $0 < \sigma < 1$, t > 0 is called critical.

In the sequel, an arbitrary nontrivial zero $s_0 = \sigma_0 + it_0$ is considered to be fixed.

The Riemann hypothesis states that $\sigma_0 = 1/2$.

Left and right sides of the equations of system 3

Let us introduce four useful functions as follows:

$$u_{1}(\sigma,t) = \int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \cos(t \ln x) dx,$$

$$v_{1}(\sigma,t) = \int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \sin(t \ln x) dx,$$

$$u_{2}(\sigma,t) = \frac{\sigma - 1}{(\sigma - 1)^{2} + t^{2}},$$

$$v_{2}(\sigma,t) = \frac{t}{(\sigma - 1)^{2} + t^{2}}.$$

Equality 2 can be represented as follows

$$u_1(\sigma, t) - iv_1(\sigma, t) = u_2(\sigma, t) - iv_2(\sigma, t).$$

Thus one can represent system 3 in the following way:

$$\begin{cases} u_1(\sigma, t) = u_2(\sigma, t), \\ v_1(\sigma, t) = v_2(\sigma, t). \end{cases}$$

$$(4)$$

If $s_0 = \sigma_0 + it_0$ is a nontrivial zero, then (σ_0, t_0) is a solution to system 4, therefore it is a solution to the second equation $v_1(\sigma, t) = v_2(\sigma, t)$ of the system. Further on, we study the behavior of both sides of this equation.

Lemma 1. By holding $t_0 > 0$ constant, the function $w = v_2(\sigma, t_0)$ increases as a function of one variable σ .

Proof. It follows from the inequality

$$\frac{\partial v_2}{\partial \sigma} = -\frac{2(\sigma - 1)t}{(t^2 + (\sigma - 1)^2)^2} > 0$$

Lemma 2. Let $v_1(\sigma, t_0) > 0$ and $v_1(\sigma', t_0) > 0$ for σ, σ' such that $0 < \sigma < \sigma' < 1$. This yields the inequality $v_1(\sigma, t_0) > v_1(\sigma', t_0)$.

Proof. The function $\sin(t_0 \ln x)$ has zeros (its x-intercepts) $x_k = e^{\pi k/t_0}$, where $k \in \mathbb{Z}$. Moreover, as $x \geq 1$, $t_0 \ln x \geq 0$ and $t_0 \ln x = \pi k$ we get $k \in \mathbb{N} \cup \{0\}$. As the function e^x is monotone increasing and tending to infinity, for each $n = 1, 2, \ldots$ the interval (n, n + 1) of the x-axis contains finite set of zeros.¹. Between any two consecutive zeros, the function will be either positive or negative. Therefore these zeros divide each interval into a finite set of sub-intervals where the function $\sin(t_0 \ln x)$ is positive or negative.

Denote U_n^+ the union of sub-intervals where the function is positive, and U_n^- - the union of sub-intervals where the function is negative in the interval $(n, n+1), n=1, 2, \ldots$

Denote $\Psi^+(\sigma, x)$ the function that coincides with the function $\{x\}\sin(t_0 \ln x)/x^{\sigma+1}$ on the set $\bigcup_{n=1}^{\infty} U_n^+$ and is equal to 0 on the set $\bigcup_{n=1}^{\infty} U_n^-$.

The function $\Psi^{-}(\sigma, x)$ is to be constructed in the same way.

The series that generates the function $v_1(\sigma, t_0)$ converges absolutely, therefore we get

$$v_1(\sigma, t_0) = \sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^+(\sigma, x) dx + \sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^-(\sigma, x) dx$$
 (5)

¹For example, computer calculation showed that for $t_0 = 100$ the interval (1; 2) contains 22 zeros.

Rewrite equation 5 as following

$$v_1(\sigma, t_0) = \int_{1}^{\infty} \Psi^+(\sigma, x) dx + \int_{1}^{\infty} \Psi^-(\sigma, x) dx.$$
 (6)

By assumption $v_1(\sigma, t_0) > 0$, thus from equation 6 we get

$$0 < \int_{1}^{\infty} (-\Psi^{-})(\sigma, x) dx < \int_{1}^{\infty} \Psi^{+}(\sigma, x) dx \tag{7}$$

Denote $\alpha = \sigma' - \sigma$. Reasoning the same way that led to equation 5, we get

$$v_1(\sigma', t_0) = \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^+(\sigma, x) dx + \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^-(\sigma, x) dx$$

Rewrite this equation as following

$$v_1(\sigma', t_0) = \int_{1}^{\infty} \frac{1}{x^{\alpha}} \Psi^+(\sigma, x) dx + \int_{1}^{\infty} \frac{1}{x^{\alpha}} \Psi^-(\sigma, x) dx.$$

Consider the difference $v_1(\sigma, t_0) - v_1(\sigma', t_0)$. Let us determine its sign.

$$v_{1}(\sigma, t_{0}) - v_{1}(\sigma', t_{0}) =$$

$$= \sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{+}(\sigma, x) dx + \sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{-}(\sigma, x) dx -$$

$$- \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{+}(\sigma, x) dx - \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{-}(\sigma, x) dx =$$

$$= \left(\sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{+}(\sigma, x) dx - \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{+}(\sigma, x) dx \right) +$$

$$+ \left(\sum_{n=1}^{\infty} \int_{n}^{n+1} \Psi^{-}(\sigma, x) dx - \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{x^{\alpha}} \Psi^{-}(\sigma, x) dx \right) =$$

$$= \sum_{n=1}^{\infty} \int_{n}^{n+1} \left(1 - \frac{1}{x^{\alpha}} \right) \Psi^{+}(\sigma, x) dx + \sum_{n=1}^{\infty} \int_{n}^{n+1} \left(1 - \frac{1}{x^{\alpha}} \right) \Psi^{-}(\sigma, x) dx =$$

$$= \int_{n=1}^{\infty} \left(1 - \frac{1}{x^{\alpha}} \right) \Psi^{+}(\sigma, x) dx + \int_{n=1}^{\infty} \left(1 - \frac{1}{x^{\alpha}} \right) \Psi^{-}(\sigma, x) dx.$$

As $1 - 1/x^{\alpha} > 0$ so it follows from inequality 7 that

$$\int\limits_{1}^{\infty} \left(1 - \frac{1}{x^{\alpha}}\right) (-\Psi^{-})(\sigma, x) dx < \int\limits_{1}^{\infty} \left(1 - \frac{1}{x^{\alpha}}\right) \Psi^{+}(\sigma, x) dx$$

Therefore

$$\int_{1}^{\infty} \left(1 - \frac{1}{x^{\alpha}}\right) \Psi^{+}(\sigma, x) dx + \int_{1}^{\infty} \left(1 - \frac{1}{x^{\alpha}}\right) \Psi^{-}(\sigma, x) dx > 0$$

This means that $v_1(\sigma, t_0) - v_1(\sigma', t_0) > 0$, hence $v_1(\sigma, t_0) > v_1(\sigma', t_0)$, Q.E.D.

It follows from Lemma 1 that all values of the function $w = v_2(\sigma, t_0)$, where $\sigma \in (0; 1)$, belong to the interval $(t_0/(1+t_0^2), 1/t_0)$.

In other words, the graph of the function $w = v_2(\sigma, t_0)$ lies entirely in the rectangle $0 < \sigma < 1, \ t_0/(1+t_0^2) < w < 1/t_0.$

Further interest is only the part of the graph of the function $w = v_1(\sigma, t_0)$ that is contained in this rectangle.

Definition 2. The rectangle $0 < \sigma < 1$, $t_0/(1+t_0^2) < w < 1/t_0$ is called critical.

Definition 3. A value of σ is called critical if the point $(\sigma, v_1(\sigma, t_0))$ belongs to the critical rectangle.

Thus the value σ_0 is critical.

The graphs of $w = v_1(\sigma, t_0)$ and $w = v_2(\sigma, t_0)$ intersect at the point $(\sigma_0, v_2(\sigma_0, t_0))$.

Lemma 3. Holding the value $t_0 > 0$ constant, we get the function $v_1(\sigma, t_0)$ decreasing on the set of critical values of the variable σ .

Proof. Let σ_1 and σ_2 be arbitrary critical values such that $\sigma_1 < \sigma_2$. The function $v_1(\sigma, t_0)$ is positive at this values, hence it follows from Lemma 2 that $v_1(\sigma_1, t_0) > v_1(\sigma_2, t_0)$. The lemma is proved.

The proof of the Riemann hypothesis

Theorem. Let $s_0 = \sigma_0 + it_0$ be a nontrivial zero of the Riemann zeta function; then $\sigma_0 = 1/2$.

Proof. A nontrivial zero of the zeta function is a solution to equation 2, hence the pair (σ_0, t_0) satisfies system 4, and, in particular, its second equality.

From Lemmas 2 and 3 it follows that this pair is unique. Suppose $\sigma_0 \neq 1/2$. It is known that nontrivial zeros are symmetric about the line Re s = 1/2, hence there exists another zero $1 - \sigma_0 + it_0$ at the same "height" $t = t_0$, therefore the pair $(1 - \sigma_0, t_0)$ satisfies the second equality as well.

This contradiction proves the theorem.

References

[1] Галочкин А.И.,Нестеренко Ю.В., Шидловский А.Б. Введение в теорию чисел, Изд-во Московского университета,1984