Доказательство гипотезы Римана о нетривиальных нулях дзета-функции

© H. M. Мусин

26.10.2019

УДК 511

Аннотация

Доказывается гипотеза Римана о нетривиальных нулях дзета-функции.

Если некоторое комплексное число $s_0 = \sigma_0 + it_0$ является нетривиальным нулём, то (σ_0, t_0) является решением некоторой системы двух уравнений двух действительных переменных σ и t.

Изучение одного из двух уравнений показало, что его левая часть не возрастает, правая часть возрастает при фиксированном $t=t_0>0$ как функции переменной σ на множестве так называемых критических значений, значит, на «высоте» $t=t_0$ это решение единственно. Из свойства симметричности нетривиальных нулей относительно прямой $Re \, s=1/2$ следует, что $\sigma_0=1/2$.

Ключевые слова: гипотеза Римана, дзета-функция, нетривиальные нули.

Введение и постановка задачи

Пусть $s=\sigma+it$ — комплексная переменная, где $\sigma=\mathrm{Re}\,s,t=\mathrm{Im}\,s.$ $x\in\mathbb{R}$ - действительная переменная.

Известно [1], что при ${\rm Re}\, s>0, s\neq 1$ дзета-функция Римана $\zeta(s)$ может быть представлена в виде

$$\zeta(s) = 1 + \frac{1}{s-1} - s \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} dx \tag{1}$$

Здесь $\{x\}$ обозначает дробную часть числа x. Перепишем равенство 1 в виде

$$\zeta(s) = s \left(\frac{1}{s-1} - \int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} dx \right)$$

Тогда нахождение нетривиальных нулей функции $\zeta(s)$ сводится к решению уравнения

$$\int_{1}^{\infty} \frac{\{x\}}{x^{s+1}} dx = \frac{1}{s-1} \tag{2}$$

Имеют место равенства

$$\frac{1}{x^{s+1}} = \frac{1}{x^{\sigma+1}} \left(\cos(t \ln x) - i \sin(t \ln x) \right),$$

$$\frac{1}{s-1} = \frac{\sigma - 1}{(\sigma - 1)^2 + t^2} - i \frac{t}{(\sigma - 1)^2 + t^2}.$$

Поэтому уравнение 2 будет эквивалентно следующей системе:

$$\begin{cases} \int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \cos(t \ln x) dx = \frac{\sigma - 1}{(\sigma - 1)^2 + t^2}, \\ \int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \sin(t \ln x) dx = \frac{t}{(\sigma - 1)^2 + t^2}. \end{cases}$$
(3)

Как известно, нули дзета-функции Римана симметричны относительно вещественной оси, поэтому достаточно рассмотреть случай t>0.

В дальнейшем изложении всегда $0<\sigma<1,\ t>0.$ Кроме того, некоторый нетривиальный нуль $s_0=\sigma_0+it_0$ будет считаться фиксированным.

Гипотеза Римана утверждает, что выполняется равенство $\sigma_0 = 1/2$.

О левых и правых частях уравнений системы 3

Введем следующие 4 функции:

$$u_{1}(\sigma,t) = \int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \cos(t \ln x) dx,$$

$$v_{1}(\sigma,t) = \int_{1}^{\infty} \frac{\{x\}}{x^{\sigma+1}} \sin(t \ln x) dx,$$

$$u_{2}(\sigma,t) = \frac{\sigma - 1}{(\sigma - 1)^{2} + t^{2}},$$

$$v_{2}(\sigma,t) = \frac{t}{(\sigma - 1)^{2} + t^{2}}.$$

Таким образом, систему 3 можно записать в виде

$$\begin{cases} u_1(\sigma, t) = u_2(\sigma, t), \\ v_1(\sigma, t) = v_2(\sigma, t). \end{cases}$$

$$(4)$$

Если $s_0 = \sigma_0 + it_0$ - нетривиальный нуль дзета-функции, то (σ_0, t_0) является решением системы 4 и, в частности, уравнения $v_1(\sigma, t) = v_2(\sigma, t)$; в дальнейшем изложении фиксируем значение $t = t_0 > 0$. Далее изучаем поведение левой и правой частей именно этого уравнения. Изучение другого уравнения этой системы логической необходимости для доказательства гипотезы не имеет.

Лемма 1. Функция $w = v_2(\sigma, t_0)$ при фиксированном $t_0 > 0$ возрастает как функция от переменной σ .

Доказательство. Справедливость леммы следует из неравенства

$$\frac{dv_2}{d\sigma} = -\frac{2(\sigma - 1)t_0}{(t_0^2 + (\sigma - 1)^2)^2} > 0$$

Из леммы 1 следует, что все значения функции $w=v_2(\sigma,t_0)$ при $\sigma\in(0;1)$ принадлежат интервалу $(t_0/(1+t_0^2),1/t_0).$

Другими словами, график функции $w=v_2(\sigma,t_0)$ целиком лежит в прямоугольнике $0<\sigma<1,\ t_0/(1+t_0^2)< w<1/t_0$. Далее нас интересует часть графика функции $v_1(\sigma,t_0)$, лежащая в этом прямоугольнике.

Определение 1. Прямоугольник $0 < \sigma < 1$, $t_0/(1+t_0^2) < w < 1/t_0$ будем называть критическим прямоугольником.

Определение 2. Значение переменной σ , при котором соответствующая точка $(\sigma, v_1(\sigma, t_0))$ графика функции $v_1(\sigma, t_0)$ находится в критическом прямоугольнике, будем называть критическим значением.

Таким образом, значение σ_0 является критическим значением переменной σ , т.к. точка $(\sigma_0, v_1(\sigma_0, t_0))$ находится в критическом прямоугольнике; в то же время это точка пересечения графиков функций $v_1(\sigma, t_0)$ и $v_2(\sigma, t_0)$.

Обозначим

$$\Psi(\sigma, x) = \frac{\{x\}}{x^{\sigma+1}} \sin(t_0 \ln x).$$

Тогда имеет место равенство

$$v_1(\sigma, t_0) = \int_{1}^{\infty} \Psi(\sigma, x) dx.$$

Пемма 2. Функция $v_1(\sigma, t_0)$ при фиксированном $t_0 > 0$ не возрастает на множестве критических значений переменной σ .

Доказательство. Пусть σ' - некоторое положительное число такое, что $\sigma + \sigma'$ - критическое значение. Надо показать, что $v_1(\sigma + \sigma', t_0) \leq v_1(\sigma, t_0)$.

Очевидно, что

$$\Psi(\sigma + \sigma', x) = \frac{1}{x^{\sigma'}} \Psi(\sigma, x).$$

Тогда

$$v_1(\sigma + \sigma', t_0) = \int_{1}^{\infty} \frac{1}{x^{\sigma'}} \Psi(\sigma, x) dx.$$

Так как σ и $\sigma + \sigma'$ - критические значения, то $v_1(\sigma, t_0) > 0$ и $v_1(\sigma + \sigma', t_0) > 0$, поэтому для некоторого достаточно большого T_0 и любого $T > T_0$ имеют место неравенства

$$\int\limits_{1}^{T}\Psi(\sigma,x)dx>0 \ \text{и} \ \int\limits_{1}^{T}\frac{1}{x^{\sigma'}}\Psi(\sigma,x)dx>0.$$

Так как функция $\frac{1}{x^{\sigma'}}$ монотонно убывает по x, то по второй теореме о среднем для интеграла найдётся точка $\xi = \xi(T) \in [1, T]$, такая что

$$\int\limits_{1}^{T}\frac{1}{x^{\sigma'}}\Psi(\sigma,x)dx=A+\gamma B, \text{ где } \gamma=\frac{1}{T^{\sigma'}}, A=\int\limits_{1}^{\xi}\Psi(\sigma,x)dx \text{ и } B=\int\limits_{\xi}^{T}\Psi(\sigma,x)dx.$$

При $\xi = 1$ лемма верна. Пусть $\xi > 1$.

Итак, множество M таких ξ непусто. Доказательства второй теоремы о среднем сводятся к тому, что это множество является множеством нулей некоторой непрерывной функции на замкнутом отрезке и поэтому множество M замкнуто как прообраз одноточечного множества $\{0\}$. Кроме того, оно ограничено снизу, поэтому inf $M = \min M$. Пусть $\xi = \min M$.

Ясно, что
$$0 < \gamma < 1, A + B > 0, A + \gamma B > 0$$
.

Утверждение леммы сводится к неравенству $A + \gamma B \leqslant A + B$.

Рассмотрим сначала случай B < 0. Из этого неравенства следует, что A > 0, иначе $A + \gamma B < 0.$

Нам понадобится функция

$$\varphi(u) = \int_{u}^{\xi} \Psi(\sigma, x) dx + B, u \in [1; \xi].$$

 $\varphi(1)=A+B>0$. В то же время $\varphi(\xi)=B<0$. В силу непрерывности функции $\varphi(u)$ на интервале $(1;\xi)$ имеется хотя бы один нуль ξ' этой функции. Ясно, что $\xi'<\xi$.

Введем функцию $\chi(u)=\int\limits_{\xi'}^u \Psi(\sigma,x)dx$ на $[\xi';\xi].$

Так как
$$\varphi(\xi')=\int\limits_{\xi'}^{\xi}\Psi(\sigma,x)dx+B=0,$$
 то $\int\limits_{\xi'}^{\xi}\Psi(\sigma,x)dx=-B>0.$

Замечаем, что тогда $0<\gamma\int\limits_{\xi'}^{\xi}\Psi(\sigma,x)dx<\int\limits_{\xi'}^{\xi}\Psi(\sigma,x)dx$. Но ведь множество значе-

ний функции $\chi(u)$ на отрезке $[\xi';\xi]$ содержит отрезок $\left[0;\int\limits_{\xi'}^{\xi}\Psi(\sigma,x)dx\right].$

Следовательно, существует $\xi'' \in (\xi'; \xi)$ такое, что

$$\chi(\xi'') = \int_{\xi''}^{\xi} \Psi(\sigma, x) dx = \gamma \int_{\xi'}^{\xi} \Psi(\sigma, x) dx.$$

Получаем

$$\int_{1}^{T} \frac{1}{x^{\sigma'}} \Psi(\sigma, x) dx = A + \gamma B = \int_{1}^{\xi''} \Psi(\sigma, x) dx + \int_{\xi''}^{\xi} \Psi(\sigma, x) dx + \gamma B =$$

$$= \int_{1}^{\xi''} \frac{1}{x^{\sigma'}} \Psi(\sigma, x) dx + \gamma \int_{\xi'}^{\xi} \Psi(\sigma, x) dx + \gamma B =$$

$$= \int_{1}^{\xi''} \frac{1}{x^{\sigma'}} \Psi(\sigma, x) dx + \gamma \left(\int_{\xi'}^{\xi} \Psi(\sigma, x) dx + B \right) =$$

$$= \int_{1}^{\xi''} \frac{1}{x^{\sigma'}} \Psi(\sigma, x) dx + \gamma \varphi(\xi').$$

Таким образом, при ξ'' опять выполнена вторая теорема о среднем:

$$\int_{1}^{T} \frac{1}{x^{\sigma'}} \Psi(\sigma, x) dx = A'' + \gamma B'', \text{ где } A'' = \int_{1}^{\xi''} \frac{1}{x^{\sigma'}} \Psi(\sigma, x) dx, B'' = \gamma \varphi(\xi') = 0.$$

Значит, $\xi'' \in M$.

Но неравенство $\xi'' < \xi$ противоречит тому, как было выбрано значение ξ , поэтому $\xi'' \not\in M$.

Полученное противоречие явилось следствием допущения того, что B < 0, следовательно, $B \geqslant 0.$

Но ведь если $B\geqslant 0$, то $A+\gamma B\leqslant A+B$, то есть утверждение леммы имеет место.

Итак, для любого $T > T_0$ доказано неравенство

$$\int\limits_{1}^{T}\frac{1}{x^{\sigma'}}\Psi(\sigma,x)dx\leqslant \int\limits_{1}^{T}\Psi(\sigma,x)dx, \text{значит,} \int\limits_{1}^{\infty}\frac{1}{x^{\sigma'}}\Psi(\sigma,x)dx\leqslant \int\limits_{1}^{\infty}\Psi(\sigma,x)dx.$$

Лемма 2 доказана.

Доказательство гипотезы Римана

Теорема. Если дзета-функция Римана при фиксированном $t = t_0 > 0$ имеет решение $s_0 = \sigma_0 + it_0$, то $\sigma_0 = 1/2$.

Доказательство. Нетривиальный нуль дзета-функции является решением уравнения 2, значит, пара (σ_0, t_0) удовлетворяет системе 4 и, в частности, второму уравнению этой системы.

Из лемм 1 и 2 следует, что эта пара единственная. Если при этом $\sigma_0 \neq 1/2$, то из свойства симметричности решений относительно прямой $\sigma = 1/2$ следует, что имеется и второе решение $1 - \sigma_0 + it_0$, и пара $(1 - \sigma_0, t_0)$ тоже удовлетворяет второму уравнению системы. Получается противоречие, следовательно, $\sigma_0 = 1/2$.

Гипотеза Римана доказана.

Список литературы

[1] Галочкин А.И., Нестеренко Ю.В., Шидловский А.Б. Введение в теорию чисел. Изд-во Московского университета, 1984.